Ground Rules

- Remember why you're here:
 - Review and monitor the development of the Final Plan
 - Provide input and insight from your communities
 - Share progress with your communities
- Be respectful of others
- Be present and focused during meetings
- Be additive, not repetitive, during discussions
- Everyone should participate and no one should dominate
- Be clear when you're speaking if you're sharing your own thoughts or input provided by those you represent
- There are no stupid questions! Ask!
- Be open to new ideas
- Don't talk over people or interrupt
- Moderator will make note of group members who raise their hands to speak; or, wait to speak
- If there are 7 seconds of silence, we can move on from a discussion topic

Today's Agenda: Public Stakeholder Group Meeting #5

- Final Plan Timeline
- Green Infrastructure
- Solutions
 - Gillies Creek
 - North Side and Hampton-McCloy
- Next Meetings

The Process: Developing the Final Plan

WEAREHERE

Methods for Controlling Combined Sewer Systems

Green Infrastructure

Low Line Green – 7th City Council District

Method: Green Infrastructure

Purpose

Reduce stormwater in combined sewer system

	Pros		Cons
•	Can be effective in very small areas (low flows)	•	Not suited to remove significant volume
•	Visible improvement	•	Typically very expensive
		•	Requires significant maintenance

τ.

Forest View Green Alley – 4th City Council District

Green Infrastructure – Storage

Temporarily stores stormwater runoff that slowly drains

Common Practices:

- Pond
- Rain Barrels and Cisterns

Green Infrastructure – Pond

Cost	Medium				
Performance	Stores stormwater and then drains once the system has capacity				
	Only 0-15% Soaks In				
Maintenance	Low				
Limitations	Lacks aesthetic appeal				

Green Infrastructure – Rain Barrels and Cisterns

Cost	High
Performance	 Stores stormwater and then drains once the system has capacity
Maintenance	Low
Limitations	 Needs to be emptied before every rain event Limited storage volume
	• Linnited Storage volume

Green Infrastructure – Soaking In

Holds smaller volumes of runoff and soaks into the ground

Additional rain (over 1-inch) flows into the combined sewer system

Common Practices:

- Rain Gardens
- Open Space
- Permeable Pavers
- Ditches
- Trees

Green Infrastructure – Rain Gardens

Broad Rock Branch Library – 8th City Council District

Cost	High				
Performance	40-80% Soaks In				
Maintenance	High				
	 Possible soil amendment requirement 				
Limitations	 Requires specialized plant selection and maintenance 				
	 Maximum drainage area of 5 acres 				

Green Infrastructure – Open Space

	Vegetated filter strip design Slope design may vary from site to site	Cost	Medium
	Berm placed perpendicular to strip to prevent concentrated flows	Performance	50-75% Soaks In
		Maintenance	Low
Top elevation of strip on same contour, abutting stone trench	Wooded filter strip Wooded filter strip Grass filter strip Slope of 3% or less	Limitations	 Must be close to wetland/conserved open space Possible soil amendment pecessary
Stone trench act as a level spread	ts der		amenament necessary

Green Infrastructure – Permeable Pavers

Concrete	e Pavers	Cost	High
	Permeable Joint Material Open-graded Bedding Course	Performance	45-75% Soaks In
	Open-graded	Maintenance	Medium
Image: wide wide wide wide wide wide wide wide	Base Reservoir Open-graded Subbase Reservoir Underdrain (as required) Optional Geotextile Under Subbase	Limitations	 Can only treat impermeable surface Extensive construction Requires vacuum truck Easily clogged

Green Infrastructure – Ditches

Green Infrastructure – Summary

Engineered Solutions There's no "one type fits all" solution

Performance

• Typically treat small rain events

Implementation

• Very challenging to implement in fully built out environments (downtown)

Maintenance

 Can completely lose their function if not regularly maintained

12th Street Green Alley – 6th City Council District

Solutions Discussion

A Review of Initial Evaluation Criteria

Identify good solutions to further evaluate (cost & performance)

□ Technical Feasibility

- Can we build it?
- Will it work?

Community Benefits/Impacts

- Will this impact daily activities of citizens?
- Can this be paired with a project to improve the community?

□ Regulatory and 3rd Party Impacts

- Can the construction be permitted?
- Does land need to be bought?

Operation and Maintenance Impacts

• Are additional equipment/employees needed to run and maintain the project?

Solutions Identification

Setting the Stage: Gillies Creek

Events to Control: ~40 per year

Volume to Control: 40-70 MG/year

Criteria		CSS Outfall								
		4	39	24	26	25	31	Total		
Drainage Area (acres)		80	160	120	80	60	170	670		
0001	Overflow Volume (MG)	14	26	2	4	0.5	20	67		
2021	Overflow Events (#)	38	40	7	11	3	15			
2022	Overflow Volume (MG)	9	13	0.1	1	0	13	36		
	Overflow Events (#)	44	41	2	6	1	12			

Solutions in Our Toolbox

Outfall 03's 90" Diameter Pipe

Outfall 31

Events to Control: ~15 per year

Volume to Control: 10-20 MG/year

Drai	170	
2021	Overflow Volume (MG)	20
	Overflow Events (#)	15
0000	Overflow Volume (MG)	13
2022	Overflow Events (#)	12

Outfall 31 - Bigger Sewer Pipe

Technical Feasibility

 Enough space for sufficiently-sized pipe to reduce overflow events to 0 – 6 per year

Community Benefits/Impacts

 Opportunity to install with pedestrian pathway to improve access to Stony Run Creek

Regulatory and 3rd Party Impacts

- Moderate Permitting
- Minimal land and easement acquisition

Operation and Maintenance Impacts

Minimal (maintenance of a new pipe)

□ Technical Feasibility

 Enough space for sufficiently-sized tank to reduce overflow events to 0 – 6 per year

Community Benefits & Impacts

- Minimal impacts to the public during construction
- Odor control will be required
- Opportunity to install with pedestrian pathway to improve access to Stony Run Creek

□ Regulatory and 3rd Party Impacts

Moderate permitting

Operation and Maintenance Impacts

• Moderate (cleaning and maintenance of tank)

Others

Events to Control: ~40 per year

Volume to Control: 35-50 MG/year

		CSO Outfall							
	Criteria	4	39	24	26	25	Total		
Drainage Area (acres)		80	160	120	80	60	670		
0004	Overflow Volume (MG)	14	26	2	4	0.5	67		
2021	Overflow Events (#)	38	40	7	11	З			
0000	Overflow Volume (MG)	9	13	0.1	1	0	36		
2022	Overflow Events (#)	44	41	2	6	1			

□ Technical Feasibility

 Enough space for sufficiently-sized pipe to reduce overflow events to 0 – 6 per year

Community Benefits/Impacts

 Opportunity to install with pedestrian pathway to improve access to Gillies Creek

□ Regulatory and 3rd Party Impacts

- Moderate permitting
- Minimal land and easement acquisition

Operation and Maintenance Impacts

• Minimal (maintenance of a new pipe)

□ Technical Feasibility

 Enough space for sufficiently-sized tank to reduce overflow events to 0 – 6 per year

Community Benefits & Impacts

- Impacts to Gillies Creek Park during construction
- Odor control will be required
- Opportunity to install with pedestrian pathway to improve access to Gillies Creek

□ Regulatory and 3rd Party Impacts

• Moderate permitting

Operation and Maintenance Impacts

• Moderate (cleaning and maintenance of tank)

Technical Feasibility

- Enough space for sufficiently-sized treatment facility to reduce overflow events to 0 6 per year
- Result in higher discharged nutrients, solids, etc.

Community Benefits & Impacts

- Impacts to Gillies Creek Park during construction
- Odor control will be required
- Opportunity to install with pedestrian pathway to improve access to Gillies Creek

□ Regulatory and 3rd Party Impacts

• Significant permitting

Operation and Maintenance Impacts

• Very significant (operation of a treatment facility)

Technical Feasibility

- Very invasive construction would occur at every home and in every street
- Construction could last approximately 5 years

Community Benefits & Impacts

Noise and traffic impacts along all streets

Regulatory and 3rd Party Impacts

- Minimal permitting
- Minimal land and easement acquisition

Operation and Maintenance Impacts

• Minimal (maintenance of new pipes)

Legend

Green Infrastructure

□ Technical Feasibility

Would need 25 acres of permeable pavement for volume reduction (10 street miles, 20%)

Community Benefits/Impacts

- Beautification of the area
- Provide additional greenspace

Regulatory and 3rd Party Impacts

- Minimal permitting
- Minimal land/easement acquisition

Operation and Maintenance Impacts

• Moderate (regular maintenance is required for green infrastructure to continue to perform as intended)

West End Branch Library – 1st City Council District

Summary of Gillies Creek Solutions

Hampton-McCloy Solutions Identification

Setting the Stage: North Side and Hampton-McCloy

		CSS Outfall						
	Criteria	11	10	9	7	Total		
Drainage Area (acres)		290	230	50	50	670		
	Overflow Volume (MG)	31	0	0	1	32		
2021	Overflow Events (#)	35	0	0	7			
2022	Overflow Volume (MG)	5	0	0	1	6		
	Overflow Events(#)	18	0	0	9			

	o	CSS Outfall					
	Criteria	19	20	33	Total		
Drainage Area (acres)		400	320	60	670		
0001	Overflow Volume (MG)	0	0.3	0	0.3		
2021	Overflow Events(#)	0	2	0			
0000	Overflow Volume(MG)	0	0	0	0		
2022	Overflow Events (#)	0	0	0			

Events to Control: ~20-35 per year

Volume to Control: 10-30 MG/year

Outfall 11 - Bigger Sewer Pipe (Alt. 1)

□ Technical Feasibility

- Diverts 70 acres of drainage area to the Storage Tunnel
- Reduces overflow events to 4 6 in an average year

□ Community Benefits/Impacts

 Construction on Colorado Avenue would have impacts on local residents

Regulatory and 3rd Party Impacts

Minimal permitting

Operation and Maintenance Impacts

• Minimal (maintenance of a new pipe)

Technical Feasibility

 Enough space for sufficiently-size pipe to reduce overflow events to 4-6 per year

Community Benefits & Impacts

 Impacts to the public during construction around Brown's Island and on Tredegar Street

- □ Regulatory and 3rd Party Impacts
 - Moderate permitting (work around railroads)

Operation and Maintenance Impacts

Minimal (maintenance of a new pipe)

Technical Feasibility

Enough space for sufficiently-size tank to reduce overflow events to 4 – 6 per year

Community Benefits & Impacts

- Limited use of North Bank trail during construction
- Odor control will be required

□ Regulatory and 3rd Party Impacts

- Moderate permitting (work around railroads and canal)
- Operation and Maintenance Impacts
 - Moderate (cleaning and maintenance of tank)

□ Technical Feasibility

- Enough space for sufficiently-sized treatment facility to reduce overflow events to 4 – 6 per year
- Result in higher discharged nutrients, solids, etc.

Community Benefits & Impacts

- Impacts to the park system during construction
- Odor control will be required

- □ Regulatory and 3rd Party Impacts
 - Significant permitting

Operation and Maintenance Impacts

Very significant (operation of a treatment facility)

Outfall 11 - Separation

\otimes

Technical Feasibility

- Very invasive construction would occur at every home and in every street
- Construction could last approximately 3 years

Community Benefits & Impacts

• Noise and traffic impacts along all streets

Regulatory and 3rd Party Impacts

- Minimal permitting
- Minimal land and easement acquisition

Operation and Maintenance Impacts

• Minimal (maintenance of new pipes)

Outfall 11 - Green Infrastructure

Technical Feasibility

Would need 5 acres of permeable pavement for volume reduction (2 street miles, 10%)

□ Community Benefits/Impacts

- Beautification of the area
- Provide additional greenspace

□ Regulatory and 3rd Party Impacts

- Minimal permitting
- Minimal land/easement acquisition

Operation and Maintenance Impacts

 Moderate (regular maintenance is required for green infrastructure to continue to perform as intended)

Stormwater Utility Permeable Paver Parking Lot – 6th District

Summary of North Side and Hampton-McCloy

What's Coming in April

Next Meeting: April 2023

Grace.LeRose@rva.gov

Outfall 03 Pipeline & Canal Walk Construction